temperature.cpp

changeset 0
2c8ba1964db7
equal deleted inserted replaced
-1:000000000000 0:2c8ba1964db7
1 /*
2 temperature.c - temperature control
3 Part of Marlin
4
5 Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
6
7 This program is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21 /*
22 This firmware is a mashup between Sprinter and grbl.
23 (https://github.com/kliment/Sprinter)
24 (https://github.com/simen/grbl/tree)
25
26 It has preliminary support for Matthew Roberts advance algorithm
27 http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
28
29 */
30
31
32 #include "Marlin.h"
33 #include "ultralcd.h"
34 #include "temperature.h"
35
36 //===========================================================================
37 //=============================public variables============================
38 //===========================================================================
39 int target_raw[EXTRUDERS_T] = { 0 };
40 int target_raw_bed = 0;
41
42 int current_raw[EXTRUDERS_T] = { 0 };
43 int current_raw_bed = 0;
44
45 int b_beta = BED_BETA;
46 int b_resistor = BED_RS;
47 long b_thermistor = BED_NTC;
48 float b_inf = BED_R_INF;
49
50 int n_beta = E_BETA;
51 int n_resistor = E_RS;
52 long n_thermistor = E_NTC;
53 float n_inf = E_R_INF;
54
55 #ifdef PIDTEMP
56 // used external
57 float pid_setpoint[EXTRUDERS_T] = { 0.0 };
58
59 float Kp=DEFAULT_Kp;
60 float Ki=DEFAULT_Ki;
61 int Ki_Max=PID_INTEGRAL_DRIVE_MAX;
62 float Kd=DEFAULT_Kd;
63
64 #endif //PIDTEMP
65
66
67 //===========================================================================
68 //=============================private variables============================
69 //===========================================================================
70 static volatile bool temp_meas_ready = false;
71
72 static unsigned long previous_millis_bed_heater;
73 //static unsigned long previous_millis_heater;
74
75 #ifdef PIDTEMP
76 //static cannot be external:
77 static float temp_iState[EXTRUDERS_T] = { 0 };
78 static float temp_dState[EXTRUDERS_T] = { 0 };
79 static float pTerm[EXTRUDERS_T];
80 static float iTerm[EXTRUDERS_T];
81 static float dTerm[EXTRUDERS_T];
82 //int output;
83 static float pid_error[EXTRUDERS_T];
84 static float temp_iState_min[EXTRUDERS_T];
85 static float temp_iState_max[EXTRUDERS_T];
86 // static float pid_input[EXTRUDERS_T];
87 // static float pid_output[EXTRUDERS_T];
88 static bool pid_reset[EXTRUDERS_T];
89 #endif //PIDTEMP
90 static unsigned char soft_pwm[EXTRUDERS_T];
91
92
93 // Init min and max temp with extreme values to prevent false errors during startup
94 // static int minttemp[EXTRUDERS_T] = { 0 };
95 // static int maxttemp[EXTRUDERS_T] = { 16383 }; // the first value used for all
96 static int bed_minttemp = 0;
97 static int bed_maxttemp = 16383;
98
99
100 //===========================================================================
101 //============================= functions ============================
102 //===========================================================================
103
104 void PID_autotune(float temp)
105 {
106 float input;
107 int cycles=0;
108 bool heating = true;
109
110 unsigned long temp_millis = millis();
111 unsigned long t1=temp_millis;
112 unsigned long t2=temp_millis;
113 long t_high;
114 long t_low;
115
116 long bias=PID_MAX/2;
117 long d = PID_MAX/2;
118 float Ku, Tu;
119 float Kp, Ki, Kd;
120 float max, min;
121
122 SERIAL_ECHOLN("PID Autotune start");
123
124 disable_heater(); // switch off all heaters.
125
126 soft_pwm[0] = PID_MAX/2;
127
128 for(;;) {
129
130 if(temp_meas_ready == true) { // temp sample ready
131 CRITICAL_SECTION_START;
132 temp_meas_ready = false;
133 CRITICAL_SECTION_END;
134 input = analog2temp(current_raw[0], 0);
135
136 max=max(max,input);
137 min=min(min,input);
138 if(heating == true && input > temp) {
139 if(millis() - t2 > 5000) {
140 heating=false;
141 soft_pwm[0] = (bias - d) >> 1;
142 t1=millis();
143 t_high=t1 - t2;
144 max=temp;
145 }
146 }
147 if(heating == false && input < temp) {
148 if(millis() - t1 > 5000) {
149 heating=true;
150 t2=millis();
151 t_low=t2 - t1;
152 if(cycles > 0) {
153 bias += (d*(t_high - t_low))/(t_low + t_high);
154 bias = constrain(bias, 20 ,PID_MAX-FULL_PID_BAND);
155 if(bias > PID_MAX/2) d = PID_MAX - 1 - bias;
156 else d = bias;
157
158 SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
159 SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
160 SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
161 SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
162 if(cycles > 2) {
163 Ku = (4.0*d)/(3.14159*(max-min)/2.0);
164 Tu = ((float)(t_low + t_high)/1000.0);
165 SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
166 SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
167 Kp = 0.6*Ku;
168 Ki = 2*Kp/Tu;
169 Kd = Kp*Tu/8;
170 SERIAL_PROTOCOLLNPGM(" Clasic PID ")
171 SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
172 SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
173 SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
174 }
175 }
176 soft_pwm[0] = (bias + d) >> 1;
177 cycles++;
178 min=temp;
179 }
180 }
181 }
182 if(input > (temp + 20)) {
183 SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature to high");
184 return;
185 }
186 if(millis() - temp_millis > 2000) {
187 temp_millis = millis();
188 SERIAL_PROTOCOLPGM("ok T:");
189 SERIAL_PROTOCOL(degHotend(0));
190 SERIAL_PROTOCOLPGM(" @:");
191 SERIAL_PROTOCOLLN(getHeaterPower(0));
192 }
193 if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
194 SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
195 return;
196 }
197 if(cycles > 5) {
198 SERIAL_PROTOCOLLNPGM("PID Autotune finished ! Place the Kp, Ki and Kd constants in the configuration.h");
199 return;
200 }
201 LCD_STATUS;
202 }
203 }
204
205 void updatePID()
206 {
207 #ifdef PIDTEMP
208 for(int e = 0; e < EXTRUDERS_T; e++) {
209 temp_iState_max[e] = Ki_Max / Ki;
210 }
211 #endif
212 }
213
214 int getHeaterPower(int heater) {
215 return soft_pwm[heater];
216 }
217
218 void manage_heater()
219 {
220 float pid_input;
221 float pid_output;
222
223 if(temp_meas_ready != true) //better readability
224 return;
225
226 CRITICAL_SECTION_START;
227 temp_meas_ready = false;
228 CRITICAL_SECTION_END;
229
230 for(int e = 0; e < EXTRUDERS_T; e++)
231 {
232
233 #ifdef PIDTEMP
234 pid_input = analog2temp(current_raw[e], e);
235
236
237 pid_error[e] = pid_setpoint[e] - pid_input;
238 if(pid_error[e] > FULL_PID_BAND) {
239 pid_output = PID_MAX;
240 pid_reset[e] = true;
241 }
242 else if(pid_error[e] < -FULL_PID_BAND) {
243 pid_output = 0;
244 pid_reset[e] = true;
245 }
246 else {
247 if(pid_reset[e] == true) {
248 temp_iState[e] = 0.0;
249 pid_reset[e] = false;
250 }
251 pTerm[e] = Kp * pid_error[e];
252 temp_iState[e] += pid_error[e];
253 temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
254 iTerm[e] = Ki * temp_iState[e];
255 //K1 defined in Configuration.h in the PID settings
256 #define K2 (1.0-K1)
257 dTerm[e] = (Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
258 temp_dState[e] = pid_input;
259 pid_output = constrain(pTerm[e] + iTerm[e] - dTerm[e], 0, PID_MAX);
260 }
261
262 #ifdef PID_DEBUG
263 SERIAL_ECHOLN(" PIDDEBUG "<<e<<": Input "<<pid_input<<" Output "<<pid_output" pTerm "<<pTerm[e]<<" iTerm "<<iTerm[e]<<" dTerm "<<dTerm[e]);
264 #endif //PID_DEBUG
265 #else /* PID off */
266 pid_output = 0;
267 if(current_raw[e] < target_raw[e]) {
268 pid_output = PID_MAX;
269 }
270 #endif
271
272 // Check if temperature is within the correct range
273 if((current_raw[e] > minttemp[e]) && (current_raw[e] < maxttemp[e]))
274 {
275 soft_pwm[e] = (int)pid_output >> 1;
276 }
277 else {
278 soft_pwm[e] = 0;
279 }
280 } // End extruder for loop
281
282
283 if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
284 return;
285 previous_millis_bed_heater = millis();
286
287 #if TEMP_BED_PIN > -1
288
289 // Check if temperature is within the correct range
290 if((current_raw_bed > bed_minttemp) && (current_raw_bed < bed_maxttemp)) {
291 if(current_raw_bed >= target_raw_bed)
292 {
293 WRITE(HEATER_BED_PIN,LOW);
294 }
295 else
296 {
297 WRITE(HEATER_BED_PIN,HIGH);
298 }
299 }
300 else {
301 WRITE(HEATER_BED_PIN,LOW);
302 }
303 #endif
304 }
305
306 // Use algebra to work out temperatures, not tables
307 // NB - this assumes all extruders use the same thermistor type.
308 int temp2analogi(int celsius, const float& beta, const float& rs, const float& r_inf)
309 {
310 float r = r_inf*exp(beta/(celsius - ABS_ZERO));
311 return AD_RANGE - (int)(0.5 + AD_RANGE*r/(r + rs));
312 }
313
314 float analog2tempi(int raw, const float& beta, const float& rs, const float& r_inf)
315 {
316 float rawf = (float)(AD_RANGE - raw);
317 return ABS_ZERO + beta/log( (rawf*rs/(AD_RANGE - rawf))/r_inf );
318 }
319
320
321 #ifdef REPRAPPRO_MULTIMATERIALS
322
323
324 float analog2temp_remote(uint8_t e)
325 {
326 return slaveDegHotend(e);
327 }
328
329 int temp2analog_remote(int celsius, uint8_t e)
330 {
331 // What do we do about this, then?
332 return temp2analogi(celsius, n_beta, n_resistor, n_inf);
333 }
334 #endif
335
336
337 int temp2analog(int celsius, uint8_t e)
338 {
339 #ifdef REPRAPPRO_MULTIMATERIALS
340 if(e > 0) return temp2analog_remote(celsius, e);
341 #endif
342 return temp2analogi(celsius, n_beta, n_resistor, n_inf);
343 }
344 float analog2temp(int raw, uint8_t e)
345 {
346 #ifdef REPRAPPRO_MULTIMATERIALS
347 if(e > 0) return analog2temp_remote(e);
348 #endif
349 return analog2tempi(raw, n_beta, n_resistor, n_inf);
350 }
351
352 int temp2analogBed(int celsius)
353 {
354 return temp2analogi(celsius, b_beta, b_resistor, b_inf);
355 }
356 float analog2tempBed(int raw)
357 {
358 return analog2tempi(raw, b_beta, b_resistor, b_inf);
359 }
360
361
362
363 void tp_init()
364 {
365 // Finish init of mult extruder arrays
366 for(int e = 0; e < EXTRUDERS_T; e++) {
367 // populate with the first value
368 maxttemp[e] = maxttemp[0];
369 #ifdef PIDTEMP
370 temp_iState_min[e] = 0.0;
371 temp_iState_max[e] = Ki_Max / Ki;
372 #endif //PIDTEMP
373 }
374
375 #if (HEATER_0_PIN > -1)
376 SET_OUTPUT(HEATER_0_PIN);
377 #endif
378 #if (HEATER_1_PIN > -1)
379 SET_OUTPUT(HEATER_1_PIN);
380 #endif
381 #if (HEATER_2_PIN > -1)
382 SET_OUTPUT(HEATER_2_PIN);
383 #endif
384 #if (HEATER_BED_PIN > -1)
385 SET_OUTPUT(HEATER_BED_PIN);
386 #endif
387 #if (FAN_PIN > -1)
388 SET_OUTPUT(FAN_PIN);
389 #endif
390
391
392 // Set analog inputs
393 ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
394 DIDR0 = 0;
395 #ifdef DIDR2
396 DIDR2 = 0;
397 #endif
398 #if (TEMP_0_PIN > -1)
399 #if TEMP_0_PIN < 8
400 DIDR0 |= 1 << TEMP_0_PIN;
401 #else
402 DIDR2 |= 1<<(TEMP_0_PIN - 8);
403 #endif
404 #endif
405 #if (TEMP_1_PIN > -1)
406 #if TEMP_1_PIN < 8
407 DIDR0 |= 1<<TEMP_1_PIN;
408 #else
409 DIDR2 |= 1<<(TEMP_1_PIN - 8);
410 #endif
411 #endif
412 #if (TEMP_2_PIN > -1)
413 #if TEMP_2_PIN < 8
414 DIDR0 |= 1 << TEMP_2_PIN;
415 #else
416 DIDR2 = 1<<(TEMP_2_PIN - 8);
417 #endif
418 #endif
419 #if (TEMP_BED_PIN > -1)
420 #if TEMP_BED_PIN < 8
421 DIDR0 |= 1<<TEMP_BED_PIN;
422 #else
423 DIDR2 |= 1<<(TEMP_BED_PIN - 8);
424 #endif
425 #endif
426
427 // Use timer0 for temperature measurement
428 // Interleave temperature interrupt with millies interrupt
429 OCR0B = 128;
430 TIMSK0 |= (1<<OCIE0B);
431
432 // Wait for temperature measurement to settle
433 delay(250);
434
435 #ifdef HEATER_0_MINTEMP
436 minttemp[0] = temp2analog(HEATER_0_MINTEMP, 0);
437 #endif //MINTEMP
438 #ifdef HEATER_0_MAXTEMP
439 maxttemp[0] = temp2analog(HEATER_0_MAXTEMP, 0);
440 #endif //MAXTEMP
441
442 #if (EXTRUDERS_T > 1) && defined(HEATER_1_MINTEMP)
443 minttemp[1] = temp2analog(HEATER_1_MINTEMP, 1);
444 #endif // MINTEMP 1
445 #if (EXTRUDERS_T > 1) && defined(HEATER_1_MAXTEMP)
446 maxttemp[1] = temp2analog(HEATER_1_MAXTEMP, 1);
447 #endif //MAXTEMP 1
448
449 #if (EXTRUDERS_T > 2) && defined(HEATER_2_MINTEMP)
450 minttemp[2] = temp2analog(HEATER_2_MINTEMP, 2);
451 #endif //MINTEMP 2
452 #if (EXTRUDERS_T > 2) && defined(HEATER_2_MAXTEMP)
453 maxttemp[2] = temp2analog(HEATER_2_MAXTEMP, 2);
454 #endif //MAXTEMP 2
455
456 #ifdef BED_MINTEMP
457 bed_minttemp = temp2analogBed(BED_MINTEMP);
458 #endif //BED_MINTEMP
459 #ifdef BED_MAXTEMP
460 bed_maxttemp = temp2analogBed(BED_MAXTEMP);
461 #endif //BED_MAXTEMP
462 }
463
464
465
466 void disable_heater()
467 {
468 for(int i=0;i<EXTRUDERS_T;i++)
469 setTargetHotend(0,i);
470 setTargetBed(0);
471 #if TEMP_0_PIN > -1
472 target_raw[0]=0;
473 soft_pwm[0]=0;
474 #if HEATER_0_PIN > -1
475 WRITE(HEATER_0_PIN,LOW);
476 #endif
477 #endif
478
479 #if TEMP_1_PIN > -1
480 target_raw[1]=0;
481 soft_pwm[1]=0;
482 #if HEATER_1_PIN > -1
483 WRITE(HEATER_1_PIN,LOW);
484 #endif
485 #endif
486
487 #if TEMP_2_PIN > -1
488 target_raw[2]=0;
489 soft_pwm[2]=0;
490 #if HEATER_2_PIN > -1
491 WRITE(HEATER_2_PIN,LOW);
492 #endif
493 #endif
494
495 #if TEMP_BED_PIN > -1
496 target_raw_bed=0;
497 #if HEATER_BED_PIN > -1
498 WRITE(HEATER_BED_PIN,LOW);
499 #endif
500 #endif
501 }
502
503 void max_temp_error(uint8_t e) {
504 disable_heater();
505 if(IsStopped() == false) {
506 SERIAL_ERROR_START;
507 SERIAL_ERRORLN((int)e);
508 SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
509 }
510 }
511
512 void min_temp_error(uint8_t e) {
513 disable_heater();
514 if(IsStopped() == false) {
515 SERIAL_ERROR_START;
516 SERIAL_ERRORLN((int)e);
517 SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
518 }
519 }
520
521 void bed_max_temp_error(void) {
522 #if HEATER_BED_PIN > -1
523 WRITE(HEATER_BED_PIN, 0);
524 #endif
525 if(IsStopped() == false) {
526 SERIAL_ERROR_START;
527 SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !!");
528 }
529 }
530
531
532 // Timer 0 is shared with millies
533 ISR(TIMER0_COMPB_vect)
534 {
535 //these variables are only accesible from the ISR, but static, so they don't loose their value
536 static unsigned char temp_count = 0;
537 static unsigned long raw_temp_0_value = 0;
538 static unsigned long raw_temp_1_value = 0;
539 static unsigned long raw_temp_2_value = 0;
540 static unsigned long raw_temp_bed_value = 0;
541 static unsigned char temp_state = 0;
542 static unsigned char pwm_count = 1;
543 static unsigned char soft_pwm_0;
544 static unsigned char soft_pwm_1;
545 static unsigned char soft_pwm_2;
546
547 if(pwm_count == 0){
548 soft_pwm_0 = soft_pwm[0];
549 if(soft_pwm_0 > 0) WRITE(HEATER_0_PIN,1);
550 #ifdef REPRAPPRO_MULTIMATERIALS
551 // Nothing to do here - remote handles it
552 #else
553 #if EXTRUDERS_T > 1
554 soft_pwm_1 = soft_pwm[1];
555 if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1);
556 #endif
557 #if EXTRUDERS_T > 2
558 soft_pwm_2 = soft_pwm[2];
559 if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1);
560 #endif
561 #endif
562 }
563 if(soft_pwm_0 <= pwm_count) WRITE(HEATER_0_PIN,0);
564 #ifdef REPRAPPRO_MULTIMATERIALS
565 // Nothing to do here - remote handles it
566 #else
567 #if EXTRUDERS_T > 1
568 if(soft_pwm_1 <= pwm_count) WRITE(HEATER_1_PIN,0);
569 #endif
570 #if EXTRUDERS_T > 2
571 if(soft_pwm_2 <= pwm_count) WRITE(HEATER_2_PIN,0);
572 #endif
573 #endif
574 pwm_count++;
575 pwm_count &= 0x7f;
576
577 switch(temp_state) {
578 case 0: // Prepare TEMP_0
579 #if (TEMP_0_PIN > -1)
580 #if TEMP_0_PIN > 7
581 ADCSRB = 1<<MUX5;
582 #else
583 ADCSRB = 0;
584 #endif
585 ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));
586 ADCSRA |= 1<<ADSC; // Start conversion
587 #endif
588 #ifdef ULTIPANEL
589 buttons_check();
590 #endif
591 temp_state = 1;
592 break;
593 case 1: // Measure TEMP_0
594 #if (TEMP_0_PIN > -1)
595 raw_temp_0_value += ADC;
596 #endif
597
598 temp_state = 2;
599 break;
600 case 2: // Prepare TEMP_BED
601 #if (TEMP_BED_PIN > -1)
602 #if TEMP_BED_PIN > 7
603 ADCSRB = 1<<MUX5;
604 #endif
605 ADMUX = ((1 << REFS0) | (TEMP_BED_PIN & 0x07));
606 ADCSRA |= 1<<ADSC; // Start conversion
607 #endif
608 #ifdef ULTIPANEL
609 buttons_check();
610 #endif
611 temp_state = 3;
612 break;
613 case 3: // Measure TEMP_BED
614 #if (TEMP_BED_PIN > -1)
615 raw_temp_bed_value += ADC;
616 #endif
617 temp_state = 4;
618 break;
619 case 4: // Prepare TEMP_1
620 #if (TEMP_1_PIN > -1)
621 #if TEMP_1_PIN > 7
622 ADCSRB = 1<<MUX5;
623 #else
624 ADCSRB = 0;
625 #endif
626 ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
627 ADCSRA |= 1<<ADSC; // Start conversion
628 #endif
629 #ifdef ULTIPANEL
630 buttons_check();
631 #endif
632 temp_state = 5;
633 break;
634 case 5: // Measure TEMP_1
635 #if (TEMP_1_PIN > -1)
636 raw_temp_1_value += ADC;
637 #endif
638 temp_state = 6;
639 break;
640 case 6: // Prepare TEMP_2
641 #if (TEMP_2_PIN > -1)
642 #if TEMP_2_PIN > 7
643 ADCSRB = 1<<MUX5;
644 #else
645 ADCSRB = 0;
646 #endif
647 ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
648 ADCSRA |= 1<<ADSC; // Start conversion
649 #endif
650 #ifdef ULTIPANEL
651 buttons_check();
652 #endif
653 temp_state = 7;
654 break;
655 case 7: // Measure TEMP_2
656 #if (TEMP_2_PIN > -1)
657 raw_temp_2_value += ADC;
658 #endif
659 temp_state = 0;
660 temp_count++;
661 break;
662 // default:
663 // SERIAL_ERROR_START;
664 // SERIAL_ERRORLNPGM("Temp measurement error!");
665 // break;
666 }
667
668 if(temp_count >= 16) // 8 ms * 16 = 128ms.
669 {
670 #if defined(HEATER_0_USES_AD595) || defined(HEATER_0_USES_MAX6675)
671 current_raw[0] = raw_temp_0_value;
672 #else
673 current_raw[0] = 16383 - raw_temp_0_value;
674 #endif
675
676 #if EXTRUDERS_T > 1
677 #ifdef HEATER_1_USES_AD595
678 current_raw[1] = raw_temp_1_value;
679 #else
680 current_raw[1] = 16383 - raw_temp_1_value;
681 #endif
682 #endif
683
684 #if EXTRUDERS_T > 2
685 #ifdef HEATER_2_USES_AD595
686 current_raw[2] = raw_temp_2_value;
687 #else
688 current_raw[2] = 16383 - raw_temp_2_value;
689 #endif
690 #endif
691
692
693 current_raw_bed = 16383 - raw_temp_bed_value;
694
695
696 temp_meas_ready = true;
697 temp_count = 0;
698 raw_temp_0_value = 0;
699 raw_temp_1_value = 0;
700 raw_temp_2_value = 0;
701 raw_temp_bed_value = 0;
702
703 for(unsigned char e = 0; e < EXTRUDERS_T; e++) {
704 if(current_raw[e] >= maxttemp[e]) {
705 target_raw[e] = 0;
706 max_temp_error(e);
707 #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
708 {
709 Stop();
710 }
711 #endif
712 }
713 if(current_raw[e] <= minttemp[e]) {
714 target_raw[e] = 0;
715 min_temp_error(e);
716 #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
717 {
718 Stop();
719 }
720 #endif
721 }
722 }
723
724 #if defined(BED_MAXTEMP) && (HEATER_BED_PIN > -1)
725 if(current_raw_bed >= bed_maxttemp) {
726 target_raw_bed = 0;
727 bed_max_temp_error();
728 Stop();
729 }
730 #endif
731 }
732 }
733

mercurial